具有有限培训数据的多个类协方差矩阵的估计是一个难题。已知样品协方差矩阵(SCM)在与可用的样本数量相比大的变量大量时执行差。为了减少SCM的平均平方误差(MSE),通常使用正则化(收缩)SCM估计器。在这项工作中,我们考虑正规化的SCM(RSCM)估算器,用于将两个不同的目标矩阵结合在一起进行正则化:类的汇总(平均)和缩放标识矩阵。当人口协方差相似时,朝向汇集的SCM正规化是有益的,而对身份矩阵的正规化保证估算者是积极的。我们推导了估算器的MSE最佳调整参数,并提出了一种在课程中遵循(未指定)椭圆分布的假设下进行估计的方法,其中包括有限的第四阶矩。建议耦合RSCMS的MSE性能被仿真评估,并在真实数据上进行正则化判别分析(RDA)分类设置。基于三个不同的真实数据集的结果表示交叉验证的可比性,但在计算时间中具有显着的加速。
translated by 谷歌翻译
Various datasets have been proposed for simultaneous localization and mapping (SLAM) and related problems. Existing datasets often include small environments, have incomplete ground truth, or lack important sensor data, such as depth and infrared images. We propose an easy-to-use framework for acquiring building-scale 3D reconstruction using a consumer depth camera. Unlike complex and expensive acquisition setups, our system enables crowd-sourcing, which can greatly benefit data-hungry algorithms. Compared to similar systems, we utilize raw depth maps for odometry computation and loop closure refinement which results in better reconstructions. We acquire a building-scale 3D dataset (BS3D) and demonstrate its value by training an improved monocular depth estimation model. As a unique experiment, we benchmark visual-inertial odometry methods using both color and active infrared images.
translated by 谷歌翻译
Understanding 3D environments semantically is pivotal in autonomous driving applications where multiple computer vision tasks are involved. Multi-task models provide different types of outputs for a given scene, yielding a more holistic representation while keeping the computational cost low. We propose a multi-task model for panoptic segmentation and depth completion using RGB images and sparse depth maps. Our model successfully predicts fully dense depth maps and performs semantic segmentation, instance segmentation, and panoptic segmentation for every input frame. Extensive experiments were done on the Virtual KITTI 2 dataset and we demonstrate that our model solves multiple tasks, without a significant increase in computational cost, while keeping high accuracy performance. Code is available at https://github.com/juanb09111/PanDepth.git
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
整体场景的理解对于自动机器的性能至关重要。在本文中,我们提出了一个新的端到端模型,用于共同执行语义细分和深度完成。最近的绝大多数方法已发展为独立任务的语义细分和深度完成。我们的方法取决于RGB和稀疏深度作为我们模型的输入,并产生密集的深度图和相应的语义分割图像。它由特征提取器,深度完成分支,语义分割分支和联合分支组成,该分支进一步处理语义和深度信息。在Virtual Kitti 2数据集上进行的实验,证明并提供了进一步的证据,即在多任务网络中将两个任务,语义细分和深度完成都结合在一起,可以有效地提高每个任务的性能。代码可从https://github.com/juanb09111/smantic Depth获得。
translated by 谷歌翻译
本文的目的是评估图像分类任务的解释热图的质量。为了评估解释性方法的质量,我们通过准确性和稳定性的角度来处理任务。在这项工作中,我们做出以下贡献。首先,我们介绍了加权游戏,该游戏衡量了正确的类“分割掩码中包含的类别引导的解释”。其次,我们使用缩放/平移变换引入了用于解释稳定性的度量,以测量具有相似内容的显着性图之间的差异。使用这些新指标生产定量实验,以评估常用CAM方法提供的解释质量。解释的质量在不同的模型体系结构之间也形成了鲜明对比,发现突出了选择在选择解释性方法时考虑模型体系结构的必要性。
translated by 谷歌翻译
我们提出了HRF-NET,这是一种基于整体辐射场的新型视图合成方法,该方法使用一组稀疏输入来呈现新视图。最近的概括视图合成方法还利用了光辉场,但渲染速度不是实时的。现有的方法可以有效地训练和呈现新颖的观点,但它们无法概括地看不到场景。我们的方法解决了用于概括视图合成的实时渲染问题,并由两个主要阶段组成:整体辐射场预测指标和基于卷积的神经渲染器。该架构不仅基于隐式神经场的一致场景几何形状,而且还可以使用单个GPU有效地呈现新视图。我们首先在DTU数据集的多个3D场景上训练HRF-NET,并且网络只能仅使用光度损耗就看不见的真实和合成数据产生合理的新视图。此外,我们的方法可以利用单个场景的密集参考图像集来产生准确的新颖视图,而无需依赖其他明确表示,并且仍然保持了预训练模型的高速渲染。实验结果表明,HRF-NET优于各种合成和真实数据集的最先进的神经渲染方法。
translated by 谷歌翻译
本文介绍了一个有效的对称性和无对应框架,称为SC6D,对于单个单眼RGB图像的6D对象姿势估计。SC6D既不需要对象的3D CAD模型,也不需要对称对称的任何先验知识。姿势估计分解为三个子任务:a)对象3D旋转表示学习和匹配;b)估计对象中心的2D位置;和c)通过分类的比例不变距离估计(沿Z轴的翻译)。SC6D在三个基准数据集(T-less,YCB-V和ITODD)上进行了评估,并在T-less数据集中获得最先进的性能。此外,SC6D在计算上比以前的最新方法Surfemb更有效。实施和预培训模型可在https://github.com/dingdingcai/sc6d-pose上公开获得。
translated by 谷歌翻译
本文着重于使用回声和RGB图像来感知和导航3D环境。特别是,我们通过将RGB图像与回声融合来执行深度估计,并从多个方向收到。与以前的作品不同,我们超越了RGB的视野,并估算了大量较大环境的密集深度图。我们表明,回声提供了有关补充RGB图像的3D结构的整体且廉价的信息。此外,我们研究了如何在机器人导航中使用回声和广泛的视野深度图。我们使用两组具有挑战性的现实3D环境(副本和Matterport3D)将提出的方法与最近的基线进行比较。将公开提供实施和预培训模型。
translated by 谷歌翻译
神经网络在许多医学成像任务中都取得了令人印象深刻的结果,但在源自不同医疗中心或患者同类的分布数据集中通常会表现出色。评估这种缺乏概括和解决潜在问题的能力是开发旨在临床实践的神经网络的两个主要挑战。在这项研究中,我们开发了一种新方法,用于评估神经网络模型通过生成大量分配移位数据集的概括能力,可用于彻底研究其对临床实践中遇到的可变性的鲁棒性。与外部验证相比,\ textit {移位评估}可以提供有关为什么在给定数据集上神经网络失败的解释,从而为如何改善模型鲁棒性提供指导。随着评估的转变,我们证明了接受最先进方法训练的神经网络对于甚至从训练数据中的分配很小的转移而高度脆弱,并且在某些情况下会失去所有歧视能力。为了解决这一脆弱性,我们制定了一种增强策略,该策略明确旨在提高神经网络对分配转移的稳健性。 \ texttt {strongaugment}通过大规模的,异构的组织病理学数据进行评估,其中包括来自两种组织类型的五个培训数据集,274个分配切换的数据集和来自四个国家 /地区的20个外部数据集。接受\ texttt {strongaugment}培训的神经网络在所有数据集上都保持相似的性能,即使通过分配变化,使用当前最新方法训练的网络将失去所有歧视能力。我们建议使用强大的增强和转移评估来训练和评估所有用于临床实践的神经网络。
translated by 谷歌翻译